Volume 5, Issue 2, June 2020, Page: 51-60
Symmetry Analysis of the Fokker Planck Equation
Faya Doumbo Kamano, Department of Research, Distance Learning High Institut, Conakry, Guinea
Bakary Manga, Department of Mathematics and Computer Sciences, University of Cheikh Anta Diop, Dakar, Senegal
Joël Tossa, Institut of Mathematics and Physical Sciences, University of Abomey-Calavi, Porto-Novo, Benin
Received: Jan. 30, 2020;       Accepted: Feb. 20, 2020;       Published: May 28, 2020
DOI: 10.11648/j.ajmcm.20200502.14      View  89      Downloads  49
In this work, the infinitesimal criterion of invariance for determining symmetries of partial differential equations is applied to the Fokker Planck equation. The maximum rang condition being satisfied, we determine the Lie point symmetries of this equation. Due to the nature of infinitesimal generators of these symmetries and the stability of Lie brackets, we obtain an infinite number of solutions from which we find examples of solutions for the Fokker Planck equation: other solutions are generated given a particular solution of the equation. Then, the Fokker Planck equation admits a conserved form, hence there is an auxiliary system associated to this equation. We show that this system admits six and an infinite number of infinitesimal generators of point symmetries giving rise to two potential symmetries of the Fokker Planck equation. We then use those potential symmetries to determine solutions of the associated system and therefore provide other solutions of the Fokker Planck equation. Note that these are essentially obtained on the basis of the invariant surface conditions. With respect to these conditions and from the potential symmetries that we have found, we finally show that in particular, some solutions of the considered Fokker Planck equation reduced to the trivial solution (solutions that are zero).
Fokker-Planck Equation, Symmetry Analysis, Lie Point Aymmetry, Potential Symmetry
To cite this article
Faya Doumbo Kamano, Bakary Manga, Joël Tossa, Symmetry Analysis of the Fokker Planck Equation, American Journal of Mathematical and Computer Modelling. Vol. 5, No. 2, 2020, pp. 51-60. doi: 10.11648/j.ajmcm.20200502.14
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Bluman G. W.; Kumei S., Symmetries and Differential Equations. Springer Verlag, New York, 1989.
Brics M.; kaupˇzs J.; Mahnke R., How to solve Fokker-Planck equation treating mixed eigenvalue spectrum, Condensed Matter Physics, Vol. 16, n°1 (2013) 1-13.
Carrillo J. A.; Cordier S. and Mancini S., A decision-making Fokker-Planck model in computational neuroscience, J. Math. Biol., 63, pp. 801-830, (2011).
Carrillo J. A.; Cordier S. and Mancini S., One dimensional Fokker-Planck re-duced dynamics of decision making models in Computational Neuroscience, Com¬mun. Math. Sci., 11 (2), pp. 523-540, (2013).
Chancelier J.-P.; Cohen De Lara M.; Pacard F., Equation de Fokker-Planck pour la densité d’un processus aléatoire dans un ouvert régulier. Comptes rendus de l’Académie des Sciences. Série 1, Mathématique, 1995, vol. 321, n°9, pp. 1251-1256.
Gardiner C., Stochastic Methods: A Handbook for Natural and Social Sciences. 4th Ed. Springer, 2009.
Hesam S.; Nazemi A. R. and Haghbin A., Analytical solution for the Fokker-Planck equation by differential transform method, Scientia Iranica, Vol. 19, Issue 4, (2012), pp. 1140-1145.
Hottovy S., The Fokker-Planck Equation, http://www.math.wisc.edu/ ˜shottovy/NumPDEreport.pdf, (2011).
Ibragimov N. H., Transformation Groups Applied to Mathematical Physics. Reidel Publishing Company: Dordrecht, Netherlands, 1985.
Jia Zheng, Lie Symmetry Analysis and Invariant Solutions of a Nonlinear Fokker-Planck Equation Describing Cell Population Growth, Advances in Mathematical Physics, https://doi.org/10.1155/2020/4975943, (2020).
Lie Sophus, Theories der Transformations gruppen. Teubner, Leipzig, 3, (1893).
Martin Ph. A., Introduction aux Processus Stochastiques en Physique. Nonequilibrium Statistical Mechanics, 2006.
Olver P. J., Applications of Lie Groups to Differential Equations. 2nd Ed., GTM, Vol. 107, Springer Verlag, New York, 1993.
Olver P. J., Equivalence, Invariants and Symmetry, Cambridge University Press, 1995.
Ouhadan A.; El Kinani E. H.; Rahmoune M. and Awane A., Symétries ponctuelles et potentielles de l’équation de Fokker-Planck. African Journal of Mathematical Physics, Vol 5 (2007) 33-41.
Ouhadan A.; El Kinani E. H.; Rahmoune M.; Awane A.; Ammar A. and Essabab S., Generalized Symmetries and Some new Solution of the Fokker-Planck Equation. African Journal Of Mathematical Physics, Volume 7, No 1 (2009) 9-17.
Ovsiannikov L. V., Group Analysis of Differential Equations. Academic Press, New York, 1982.
Pucci E. and Saccomandi G., Potential symmetries and solutions by reduction of partial differential equations. J. Phys.: Math. Gen. 26 (1993) 681-690.
Tanski I. A., Fundamental solution of Fokker-Planck equation., http://arxiv.org/ pdf/nlin/0407007.pdf, (2004).
Till D. F., Nonlinear Fokker-Planck equations: Fundamentals and Applications. Springer-Verlag, Berlin Heidlberg, 2005.
Winter S., Group classification and symmetry reductions of a nonlinear Fokker-Planck equation based on the Sharma-Taneja Mittal entropy, arXiv: 1904.01307v1 [math. AP] 2 Apr 2019.
Zorzano M. P.; Mais H.; Vazquez L., Numerical Solution for Fokker-Planck Equa-tion in Accelerators. Physica D 113, (1998) 379-381.
Browse journals by subject